I propose a practical procedure based on bias correction and sample splitting to calculate confidence intervals for functionals of generic kernel methods, i.e. nonparametric estimators learned in a reproducing kernel Hilbert space (RKHS). For example, an analyst may desire confidence intervals for functionals of kernel ridge regression. I propose a bias correction that mirrors kernel ridge regression. The framework encompasses (i) evaluations over discrete domains, (ii) derivatives over continuous domains, (iii) treatment effects of discrete treatments, and (iv) incremental treatment effects of continuous treatments. For the target quantity, whether it is (i)-(iv), I prove root-n consistency, Gaussian approximation, and semiparametric efficiency by finite sample arguments. I show that the classic assumptions of RKHS learning theory also imply inference.


翻译:我提议了一个基于偏差纠正和样本分割的实用程序,以计算通用内核方法功能(即,在复制内核Hilbert空间(RKHS)中学得的非参数估计器)的信任度,例如,分析师可能希望内核脊回归功能的置信度间隔,我提议了一个反映内核脊回归的偏差纠正器,框架包括:(一) 对离散域的评价,(二) 连续域的衍生物,(三) 离散处理的处理效果,(四) 连续处理的递增处理效果。对于目标数量,无论(一)至(四),我证明根值的一致性,高斯近似值,以及有限抽样参数的半对称效率。我表明,RKHS学习理论的典型假设也意味着推论。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
专知会员服务
159+阅读 · 2020年1月16日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
5+阅读 · 2020年10月21日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
专知会员服务
159+阅读 · 2020年1月16日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员