Analytic combinatorics in several variables is a branch of mathematics that deals with deriving the asymptotic behavior of combinatorial quantities by analyzing multivariate generating functions. We study information-theoretic questions about sequences in a discrete noiseless channel under cost constraints. Our main contributions involve the relationship between the graph structure of the channel and the singularities of the bivariate generating function whose coefficients are the number of sequences satisfying the constraints. We use these new results to invoke theorems from multivariate analytic combinatorics to obtain the asymptotic behavior of the number of cost-limited strings that are admissible by the channel. This builds a new bridge between analytic combinatorics in several variables and labeled weighted graphs, bringing a new perspective and a set of powerful results to the literature of cost-constrained channels. Along the way, we show that the cost-constrained channel capacity is determined by a cost-dependent singularity of the bivariate generating function, generalizing Shannon's classical result for unconstrained capacity, and provide a new proof of the equivalence of the combinatorial and probabilistic definitions of the cost-constrained capacity.
翻译:暂无翻译