As robotic systems increase in autonomy, there is a strong need to plan efficient trajectories in real-time. In this paper, we propose an approach to significantly reduce the complexity of solving optimal control problems both numerically and analytically. We exploit the property of differential flatness to show that it is always possible to decouple the forward dynamics of the system's state from the backward dynamics that emerge from the Euler-Lagrange equations. This coupling generally leads to instabilities in numerical approaches; thus, we expect our method to make traditional "shooting" methods a viable choice for optimal trajectory planning in differentially flat systems. To provide intuition for our approach, we also present an illustrative example of generating minimum-thrust trajectories for a quadrotor. Furthermore, we employ quaternions to track the quadrotor's orientation, which, unlike the Euler-angle representation, do not introduce additional singularities into the model.
翻译:随着机器人系统的自主性增加,非常需要实时规划高效的轨迹。 在本文中, 我们提出一个方法, 大幅降低解决最佳控制问题的复杂性。 我们利用差异平坦的属性来显示系统状态的远方动态总是能够脱离由尤勒- 拉格朗等式产生的后向动态。 这种组合通常会导致数字方法的不稳定性; 因此, 我们期望我们的方法能够将传统的“ 射击” 方法作为在差异平坦系统中最佳轨迹规划的可行选择。 为了提供我们方法的直观性, 我们还举了一个示例, 说明如何为四甲状腺生成最小的断裂轨迹。 此外, 我们使用四面图来跟踪四面图的方向, 与欧勒- 角代表法不同, 并不在模型中引入其他的奇点 。