The categorical Gini covariance is a dependence measure between a numerical variable and a categorical variable. The Gini covariance measures dependence by quantifying the difference between the conditional and unconditional distributional functions. A value of zero for the categorical Gini covariance implies independence of the numerical variable and the categorical variable. We propose a non-parametric test for testing the independence between a numerical and categorical variable using the categorical Gini covariance. We used the theory of U-statistics to find the test statistics and study the properties. The test has an asymptotic normal distribution. As the implementation of a normal-based test is difficult, we develop a jackknife empirical likelihood (JEL) ratio test for testing independence. Extensive Monte Carlo simulation studies are carried out to validate the performance of the proposed JEL-based test. We illustrate the test procedure using real a data set.
翻译:暂无翻译