When the input signal is correlated input signals, and the input and output signal is contaminated by Gaussian noise, the total least squares normalized subband adaptive filter (TLS-NSAF) algorithm shows good performance. However, when it is disturbed by impulse noise, the TLS-NSAF algorithm shows the rapidly deteriorating convergence performance. To solve this problem, this paper proposed the robust total minimum mean M-estimator normalized subband filter (TLMM-NSAF) algorithm. In addition, this paper also conducts a detailed theoretical performance analysis of the TLMM-NSAF algorithm and obtains the stable step size range and theoretical steady-state mean squared deviation (MSD) of the algorithm. To further improve the performance of the algorithm, we also propose a new variable step size (VSS) method of the algorithm. Finally, the robustness of our proposed algorithm and the consistency of theoretical and simulated values are verified by computer simulations of system identification and echo cancellation under different noise models.
翻译:当输入信号是相关的输入信号,而输入和输出信号受到高西亚噪音的污染时,输入和输出信号会受到总平方平方公化子带适应过滤器(TLS-NSAF)算法(TLS-NSAF)的污染,表现良好。然而,当它受到脉冲噪音的干扰时,TLS-NSAF算法显示了迅速恶化的趋同性能。为了解决这个问题,本文件提议了强力的最小均值总均值MSIDS(TLMM-NSAF)子带正常过滤器(TLMM-NSAF)算法(TLMM-NSAF)算法(TLMM-NSAF)算法(TLMMM-NSAF)的精确性能分析。此外,本文件还对TLMM-NSAF算法进行了详细的理论性能分析,并获得了该算法的稳定步幅和理论性稳定状态平均正方形偏差(MSD)的计算法(MSD),为了进一步改善算法的性,我们还提出了新的可变步法方法。最后,我们提议的算法的精准算法的精准和理论和模拟的校准值的一致性和校准值的一致性和校准值的一致性,通过不同噪音模型的模拟的模拟验证法的校验法的校准校准校准校验法的校准和校准和校准。