项目名称: 光致形状记忆薄壳结构多场耦合及非接触式控制
项目编号: No.11472241
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 邹鸿生
作者单位: 浙江大学
项目金额: 95万元
中文摘要: 薄壳结构的比刚度高,在航空、航天、机械等工程中应用广泛。光致形状记忆聚合物具有密度小、变形大、变形过程中无温度变化、非接触式控制的特性,是一种非常有应用前景的新型智能材料。光致形状记忆作动器通过光、弹耦合效应作用于薄壳结构,可改变薄壳结构的刚度并进行动态振动控制。本项目研究光致形状记忆聚合物材料的光、弹耦合效应,对其在光照射下的作动机理进行理论建模,建立光致形状记忆作动器与薄壳结构的多场耦合动力学方程,构建智能结构中光致形状记忆作动器的控制策略,奠定基于光致形状记忆作动器的分布式智能结构控制理论基础。对于梁、板等非壳结构及常见的薄壳结构(如锥壳、柱壳等)进行动/静态控制。测定光致形状记忆聚合物材料参数,设计光致形状记忆/薄壳结构模型,确定实验方案并搭建实验平台,验证其控制效果。将理论模型、数值模拟结果与实验作对比验证,建立光致形状记忆薄壳结构的设计准则及应用指南。
中文关键词: 光致形状记忆聚合物;薄壳结构;多场耦合;分布式控制
英文摘要: With the characteristics of high strength and weight ratio, thin shell structures are commonly applied in aerospace and mechanical engineering structures. Through employing smart materials as sensors and actuators, shell's strength and control accuracy can be enhanced, leading to a new era of engineering structures. Light activated shape memory polymer (LaSMP) exhibits low density, large deformation, non-contact actuation and no temperature change during transformation. It is a novel smart material with great application potentials. This research aims to study the light/force coupling relationship of LaSMP, model its actuation mechanism, establish the photo-mechanical governing equations of LaSMP/shell coupled systems, develop the control methods of LaSMP actuators, and establish the distributed control theory of LaSMP/thin shell coupled systems. Furthermore, this research plans to investigate static deformation and dynamic responses of non-shell structures, such as cantilever beams, rectangular plates, and also thin shell structures, such as conical shells and cylindrical shells coupled with LaSMP, measure the material properties of LaSMP, design and fabricate the LaSMP/thin shell model for experiments, validate the control effects of LaSMP. Finally, the results of theory model, numerical simulations and experiments are compared to establish design criteria and application guides of LaSMP/ thin shell structures.
英文关键词: Light activated shape memory polymer;Thin shell structure;Multi-field coupling;Distributed control