In this paper, we study error diffusion techniques for digital halftoning from the perspective of 1-bit Sigma-Delta quantization. We introduce a method to generate Sigma-Delta schemes for two-dimensional signals as a weighted combination of its one-dimensional counterparts and show that various error diffusion schemes proposed in the literature can be represented in this framework via Sigma-Delta schemes of first order. Under the model of two-dimensional bandlimited signals, which is motivated by a mathematical model of human visual perception, we derive quantitative error bounds for such weighted Sigma-Delta schemes. We see these bounds as a step towards a mathematical understanding of the good empirical performance of error diffusion, even though they are formulated in the supremum norm, which is known to not fully capture the visual similarity of images. Motivated by the correspondence between existing error diffusion algorithms and first-order Sigma-Delta schemes, we study the performance of the analogous weighted combinations of second-order Sigma-Delta schemes and show that they exhibit a superior performance in terms of guaranteed error decay for two-dimensional bandlimited signals. In extensive numerical simulations for real world images, we demonstrate that with some modifications to enhance stability this superior performance also translates to the problem of digital halftoning. More concretely, we find that certain second-order weighted Sigma-Delta schemes exhibit competitive performance for digital halftoning of real world images in terms of the Feature Similarity Index (FSIM), a state-of-the-art measure for image quality assessment.
翻译:在本文中,我们从 1 比特 Sigma- Delta 度量化的角度研究数字半速化的错误扩散技术。 我们引入了一种方法,以生成二维信号的Sigma- Delta 方法,作为其一维对等的加权组合,并表明文献中提议的各种错误扩散方案可以通过Sigma- Delta 第一顺序的Sigma- Delta 方法在本框架中体现。在二维带宽的信号模型中,我们从人类视觉认知的数学模型中,得出此类加权的Sigma- Delta 方法的定量误差界限。我们认为这些界限是朝着从数学角度理解错误扩散的良好实验性表现迈出的一步,即使它们是在Sigremum 规范中制定的,但人们知道它并不完全反映图像的视觉相似性。根据现有的错误传播算法和一等级Sigma- Delta 方案之间的对应对应的两维带宽的信号,我们研究了二等级Sigma- Delta 方案的类似加权组合的性组合性组合的绩效,并显示它们在某些保证误差差值方面表现的优优的成绩,在二维的Slodial- sal- simal- sal- simal- simal- simma- sma- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sma- sma- sal- sal- sal- sal- smal- smal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- salismalismal- sal- sal- sal- sal- salismalmental- sal- sal- sal- sal- sal- sal- sal- sal- sal- salismal- sal-smalismalismal- sal-