项目名称: 混合信号Sigma-Delta调制器设计自动化关键算法研究与软件实现

项目编号: No.61474145

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 施国勇

作者单位: 上海交通大学

项目金额: 74万元

中文摘要: Sigma-Delta调制器是用于模拟到数字信号转换的重要电路。目前的主要设计是基于开关电容电路。由于Sigma-Delta电路集成了过采样和噪声整形,它能抑制电路的非理想特性,同时能极大地提高转换分辨率。但是由于Sigma-Delta电路是混合信号电路,为评估电路性能的晶体管级仿真相当耗时,通常一次仿真就要花费几小时到几十小时,非常不利于对系统级电路进行自动优化。为此本项目提出应用以符号化分析为主的方法对宏模型生成、关键设计指标的计算、电路拓扑等关键环节进行研究,研究一种分析速度快、精度足够、直观性强的设计辅助工具。基于符号化的设计自动化方法有助于构建参数化电路单元模型,减少重复建立宏模型的工作量和重复进行电路级仿真的巨大代价。本项目在开发相关算法和软件工具的同时,将把开发的设计工具应用于一款生物体征信号采集Sigma-Delta调制器设计中。

中文关键词: 电子设计自动化;集成电路;电路仿真;低功耗;计算机辅助设计

英文摘要: Sigma-Delta Modulator (SDM) is an important class of data converter circuits, which is most commonly implemented by switched-capacitor (SC) circuits. Due to oversampling and noise shaping mechanism, SDM circuits are less sensitive to circuit imperfections and can achieve high resolution. However, due to the mixed-signal nature, transistor-level simulation of a SDM circuit is extremely time-consuming, preventing designers from well optimizing circuit design. This research is motivated to develop a set of automatic macromodeling strategies based on symbolic analysis methods to overcome the existing difficulty in design automation. This research will develop fast SNR computation methods for SDM synthesis, efficient symbolic macromodel generation methods, and effective synthesis flow. A prototype tool will be implemented and will be validated by a realistic SDM design for application in bio-potential acquisition.

英文关键词: EDA;Integrated Circuit;Circuit Simulation;Low-power;CAD

成为VIP会员查看完整内容
0

相关内容

深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
58+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
专知会员服务
48+阅读 · 2021年8月28日
中科大《计算机体系结构》2021课程,附课件
专知会员服务
77+阅读 · 2021年4月4日
专知会员服务
81+阅读 · 2020年6月20日
基于深度学习的表面缺陷检测方法综述
专知会员服务
94+阅读 · 2020年5月31日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
5+阅读 · 2022年4月8日
混合精度训练原理总结
极市平台
1+阅读 · 2021年12月7日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
58+阅读 · 2022年3月26日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
专知会员服务
48+阅读 · 2021年8月28日
中科大《计算机体系结构》2021课程,附课件
专知会员服务
77+阅读 · 2021年4月4日
专知会员服务
81+阅读 · 2020年6月20日
基于深度学习的表面缺陷检测方法综述
专知会员服务
94+阅读 · 2020年5月31日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员