Hand action recognition is essential. Communication, human-robot interactions, and gesture control are dependent on it. Skeleton-based action recognition traditionally includes hands, which belong to the classes which remain challenging to correctly recognize to date. We propose a method specifically designed for hand action recognition which uses relative angular embeddings and local Spherical Harmonics to create novel hand representations. The use of Spherical Harmonics creates rotation-invariant representations which make hand action recognition even more robust against inter-subject differences and viewpoint changes. We conduct extensive experiments on the hand joints in the First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Annotations, and on the NTU RGB+D 120 dataset, demonstrating the benefit of using Local Spherical Harmonics Representations. Our code is available at https://github.com/KathPra/LSHR_LSHT.
翻译:暂无翻译