Reconfigurable optical topologies promise to improve the performance in datacenters by dynamically optimizing the physical network in a demand-aware manner. State-of-the-art optical technologies allow to establish and update direct connectivity (in the form of edge-disjoint matchings) between top-of-rack switches within microseconds or less. However, to fully exploit temporal structure in the demand, such fine-grained reconfigurations also require fast algorithms for optimizing the interconnecting matchings. Motivated by the desire to offload a maximum amount of demand to the reconfigurable network, this paper initiates the study of fast algorithms to find k disjoint heavy matchings in graphs. We present and analyze six algorithms, based on iterative matchings, b-matching, edge coloring, and node-rankings. We show that the problem is generally NP-hard and study the achievable approximation ratios. An extensive empirical evaluation of our algorithms on both real-world and synthetic traces (88 in total), including traces collected in Facebook datacenters and in HPC clusters reveals that all our algorithms provide high-quality matchings, and also very fast ones come within 95% or more of the best solution. However, the running times differ significantly and what is the best algorithm depends on k and the acceptable runtime-quality tradeoff.
翻译:重新配置的光学表层有望通过以需求觉醒的方式动态优化物理网络,从而改善数据中心的性能。 最先进的光学技术允许在微秒或更小的微秒内建立并更新顶层开关之间的直接连接(以边缘分解匹配的形式)。 然而,要充分利用需求中的时间结构,这种细微的重新配置还需要快速算法来优化互连匹配。 受希望向可重新配置的网络倾斜最大数量的需求驱动,本文件启动了快速算法研究,以在图表中找到不连接重匹配。 我们提出并分析基于迭接匹配、 b-配对、边色色和不分级的六种算法。 我们显示,问题一般是NP硬的,研究可实现的近似比率。 我们对真实世界和合成痕迹的算法进行广泛的实证评估(共88个),包括在Facebook数据中心和HPC群中收集的痕迹,从而发现,我们所有快速算法都提供高质量的高度匹配,95个时期内和最可接受的运算法也在很大程度上取决于最佳的公式。