We consider the problem of reconstructing a full 360{\deg} photographic model of an object from a single image of it. We do so by fitting a neural radiance field to the image, but find this problem to be severely ill-posed. We thus take an off-the-self conditional image generator based on diffusion and engineer a prompt that encourages it to ``dream up'' novel views of the object. Using an approach inspired by DreamFields and DreamFusion, we fuse the given input view, the conditional prior, and other regularizers in a final, consistent reconstruction. We demonstrate state-of-the-art reconstruction results on benchmark images when compared to prior methods for monocular 3D reconstruction of objects. Qualitatively, our reconstructions provide a faithful match of the input view and a plausible extrapolation of its appearance and 3D shape, including to the side of the object not visible in the image.
翻译:我们考虑从一个物体的单一图像中重建一个完整的360×deg}摄影模型的问题。 我们这样做的方法是在图像上安装一个神经光亮场,但发现这个问题严重不妙。 我们因此在扩散的基础上使用一个不附带条件的图像生成器, 并设计出一个鼓励它“ 改变” 该物体的新观点的提示。 我们使用一个由Dream Fields和DreamFusion启发的方法, 将给定的投入视图、 有条件的先导 和其他规范者融合到最终的、 一致的重建中。 我们展示了基准图像方面的最先进的重建结果, 与先前单立体 3D 物体重建方法相比。 定性地说, 我们的重建提供了与输入视图的忠实匹配, 以及其外观和3D 形状的可信外推法, 包括图像中看不到的物体的侧面。