Developing efficient time series anomaly detection techniques is important to maintain service quality and provide early alarms. Generative neural network methods are one class of the unsupervised approaches that are achieving increasing attention in recent years. In this paper, we have proposed an unsupervised Generative Adversarial Network (GAN)-based anomaly detection framework, DEGAN. It relies solely on normal time series data as input to train a well-configured discriminator (D) into a standalone anomaly predictor. In this framework, time series data is processed by the sliding window method. Expected normal patterns in data are leveraged to develop a generator (G) capable of generating normal data patterns. Normal data is also utilized in hyperparameter tuning and D model selection steps. Validated D models are then extracted and applied to evaluate unseen (testing) time series and identify patterns that have anomalous characteristics. Kernel density estimation (KDE) is applied to data points that are likely to be anomalous to generate probability density functions on the testing time series. The segments with the highest relative probabilities are detected as anomalies. To evaluate the performance, we tested on univariate acceleration time series for five miles of a Class I railroad track. We implemented the framework to detect the real anomalous observations identified by operators. The results show that leveraging the framework with a CNN D architecture results in average best recall and precision of 80% and 86%, respectively, which demonstrates that a well-trained standalone D model has the potential to be a reliable anomaly detector. Moreover, the influence of GAN hyperparameters, GAN architectures, sliding window sizes, clustering of time series, and model validation with labeled/unlabeled data were also investigated.
翻译:开发高效的时间序列异常检测技术对于保持服务质量和提供早期警报非常重要。 生成神经网络方法是近年来日益引起关注的不受监督的方法之一。 在本文中, 我们提议了一个基于 GAN 的无监督的生成反反向网络( GAN) 异常检测框架, DEGAN 。 它完全依赖正常的时间序列数据作为输入, 将一个配置精良的导体( D) 训练成一个独立的异常预测器。 在此框架中, 时间序列数据由滑动窗口方法处理。 数据中的预期正常模式被利用来开发一个能够生成正常数据模式的发电机( G) 。 正常数据还用于超参数调制调和D 模型选择步骤。 然后, 校准的D模型被提取出来, 并用于评估看不见的时间序列( 测试) 。 Kernel 密度估计( KDE) 被应用到数据模型, 在测试时间序列中生成概率的概率 。 在测试中, 运行了80 运行的轨道 。 运行者 正在测试 Gral Ral 的轨道 。 在运行中, 测试了80 。 在运行中, 运行中, 正在测试一个运行一个运行一个运行中, 运行中, 运行一个运行了一个80 。 。