The increasing computing demands of autonomous driving applications make energy optimizations critical for reducing battery capacity and vehicle weight. Current energy optimization methods typically target traditional real-time systems with static deadlines, resulting in conservative energy savings that are unable to exploit additional energy optimizations due to dynamic deadlines arising from the vehicle's change in velocity and driving context. We present an adaptive system optimization and reconfiguration approach that dynamically adapts the scheduling parameters and processor speeds to satisfy dynamic deadlines while consuming as little energy as possible. Our experimental results with an autonomous driving task set from Bosch and real-world driving data show energy reductions up to 46.4% on average in typical dynamic driving scenarios compared with traditional static energy optimization methods, demonstrating great potential for dynamic energy optimization gains by exploiting dynamic deadlines.
翻译:自主驱动应用程序的日益增长的计算需求使得能源优化对于降低电池容量和车辆重量至关重要。 当前的能源优化方法通常针对传统的实时系统,其期限固定不变,从而导致保守的节能,由于车辆速度和驾驶环境的变化导致的动态最后期限,无法利用更多的能源优化。 我们提出了一个适应性系统优化和重组方法,动态地调整时间安排参数和处理速度,以满足动态最后期限,同时尽量少消耗能源。 我们的实验结果显示,与传统的静态能源优化方法相比,在典型的动态驱动情景下,由Bosch和现实世界驱动数据设定的自主驱动任务平均减少了46.4%的能源,这显示了利用动态最后期限实现动态能源优化的巨大潜力。