In this paper, we propose a novel sequence verificationtask that aims to distinguish positive video pairs performingthe same action sequence from negative ones with step-leveltransformations but still conducting the same task. Such achallenging task resides in an open-set setting without prioraction detection or segmentation that requires event-levelor even frame-level annotations. To that end, we carefullyreorganize two publicly available action-related datasetswith step-procedure-task structure. To fully investigate theeffectiveness of any method, we collect a scripted videodataset enumerating all kinds of step-level transformationsin chemical experiments. Besides, a novel evaluation met-ric Weighted Distance Ratio is introduced to ensure equiva-lence for different step-level transformations during evalua-tion. In the end, a simple but effective baseline based on thetransformer with a novel sequence alignment loss is intro-duced to better characterize long-term dependency betweensteps, which outperforms other action recognition methods.Codes and data will be released.
翻译:在本文中, 我们提出一个新的序列校验任务, 目的是将执行相同动作序列的正对视频对配对与带有步级变换但仍执行相同任务的负对相对区分开来。 这种挑战性任务存在于一个开放设置的设置中, 不需要事前动作检测或分解, 需要事件级别甚至框架级别说明。 为此, 我们仔细组织两个公开的与行动有关的数据集, 并配有步骤- 程序- 任务结构。 为了充分调查任何方法的有效性, 我们收集一个脚本视频数据集, 列出化学实验中各种步骤级变换的顺序。 此外, 引入了一种新的评价中精度超高的距离比比比, 以确保电子valua- 操作中不同步级变换的平衡。 最后, 一个简单而有效的基线, 以新序列调整损失的转换为基础, 是用来更好地描述跨步之间的长期依赖性, 从而超越其他动作识别方法 。 将释放一个简单而有效的基线 。