Self-supervised learning (SSL) techniques have been widely used to learn compact and informative representations from high-dimensional complex data. In many computer vision tasks, such as image classification, such methods achieve state-of-the-art results that surpass supervised learning approaches. In this paper, we investigate whether SSL methods can be leveraged for the task of learning accurate state representations of games, and if so, to what extent. For this purpose, we collect game footage frames and corresponding sequences of games' internal state from three different 3D games: VizDoom, the CARLA racing simulator and the Google Research Football Environment. We train an image encoder with three widely used SSL algorithms using solely the raw frames, and then attempt to recover the internal state variables from the learned representations. Our results across all three games showcase significantly higher correlation between SSL representations and the game's internal state compared to pre-trained baseline models such as ImageNet. Such findings suggest that SSL-based visual encoders can yield general -- not tailored to a specific task -- yet informative game representations solely from game pixel information. Such representations can, in turn, form the basis for boosting the performance of downstream learning tasks in games, including gameplaying, content generation and player modeling.


翻译:自我监督的学习技术( SSL) 已被广泛用于从高维复杂数据中学习压缩和信息化的演示。 在许多计算机视觉任务中, 如图像分类等, 此类方法可以实现最新艺术结果, 超过监管的学习方法。 在本文中, 我们调查是否可以利用 SSL 方法来学习游戏的准确状态演示任务, 如果可以的话, 在多大程度上。 为此, 我们从三个不同的 3D 游戏( VizDomoom 、 CARLA 竞赛模拟器和 Google 研究足球环境) 中收集游戏内部状态的游戏画面框架和相应序列。 我们用三种广泛使用的 SSL 算法来训练一个图像编码器, 其中三种使用的是纯原始框架, 然后试图从所学的演示中恢复内部状态变量。 我们所有三个游戏的结果显示 SSL 表达方式和游戏的内部状态与图像网络等经过预先训练的基线模型相比, 。 这样的研究结果显示, SSL 的视觉编码器可以产生一般的 -- 而不是根据特定任务定制的 -- 并且信息显示游戏显示游戏的游戏显示只是游戏的原始框架信息, 。 这些显示游戏的游戏的游戏的游戏内容可以转换,, 游戏的游戏的游戏的游戏的游戏的制作者在下进行学习基础, 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
9+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月30日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
31+阅读 · 2021年3月29日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
9+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员