Stochastic Gradient Descent (SGD) is the workhorse algorithm of deep learning technology. At each step of the training phase, a mini batch of samples is drawn from the training dataset and the weights of the neural network are adjusted according to the performance on this specific subset of examples. The mini-batch sampling procedure introduces a stochastic dynamics to the gradient descent, with a non-trivial state-dependent noise. We characterize the stochasticity of SGD and a recently-introduced variant, persistent SGD, in a prototypical neural network model. In the under-parametrized regime, where the final training error is positive, the SGD dynamics reaches a stationary state and we define an effective temperature from the fluctuation-dissipation theorem, computed from dynamical mean-field theory. We use the effective temperature to quantify the magnitude of the SGD noise as a function of the problem parameters. In the over-parametrized regime, where the training error vanishes, we measure the noise magnitude of SGD by computing the average distance between two replicas of the system with the same initialization and two different realizations of SGD noise. We find that the two noise measures behave similarly as a function of the problem parameters. Moreover, we observe that noisier algorithms lead to wider decision boundaries of the corresponding constraint satisfaction problem.
翻译:深层学习技术的工作马算法(SGD) 是深层学习技术的演算法。 在培训阶段的每个阶段,从培训数据集中抽取少量样本,神经网络的重量根据这个特定子实例的性能进行调整。 小型批量抽样程序将一个随机动态引入梯度的下降, 具有非三角状态的噪音。 我们将SGD的随机性和最近引入的变异性( 持久性 SGD) 描述成一个模拟神经网络模型。 在对称制度下, 最终培训错误为阳性的, SGD 动态达到一个固定状态, 我们从动态平均场理论中算出一个有效的温度。 我们用有效温度来量化SGD噪音的大小, 作为问题参数的函数。 在过度平衡的制度中, 我们测量SGD的噪声幅度, 通过计算两个参数之间的平均距离。 我们发现两个相较宽的变异的变异的变异的系统, 也发现了一个相同的变异的变异的级算法。