We use our hands to interact with and to manipulate objects. Articulated objects are especially interesting since they often require the full dexterity of human hands to manipulate them. To understand, model, and synthesize such interactions, automatic and robust methods that reconstruct hands and articulated objects in 3D from a color image are needed. Existing methods for estimating 3D hand and object pose from images focus on rigid objects. In part, because such methods rely on training data and no dataset of articulated object manipulation exists. Consequently, we introduce ARCTIC - the first dataset of free-form interactions of hands and articulated objects. ARCTIC has 1.2M images paired with accurate 3D meshes for both hands and for objects that move and deform over time. The dataset also provides hand-object contact information. To show the value of our dataset, we perform two novel tasks on ARCTIC: (1) 3D reconstruction of two hands and an articulated object in interaction; (2) an estimation of dense hand-object relative distances, which we call interaction field estimation. For the first task, we present ArcticNet, a baseline method for the task of jointly reconstructing two hands and an articulated object from an RGB image. For interaction field estimation, we predict the relative distances from each hand vertex to the object surface, and vice versa. We introduce InterField, the first method that estimates such distances from a single RGB image. We provide qualitative and quantitative experiments for both tasks, and provide detailed analysis on the data. Code and data will be available at https://arctic.is.tue.mpg.de.
翻译:我们用手来与对象进行互动和操控。 人工对象特别有趣, 因为它们往往需要全方位的人类手来操纵它们。 要理解、 建模和合成这种互动, 需要从彩色图像中用3D来重建手和表达对象的自动和稳健的方法。 用于估算3D手和对象的现有方法, 以图像为刻板对象。 部分原因是, 这些方法依赖于培训数据, 而没有清晰的物体操作的数据集 。 因此, 我们引入 ARCTIC —— 手和直线对象的自由形式互动的第一个数据集。 ARCTIC 拥有1.2M 图像, 并配有精确的 3D 模具, 用于手和时间移动和变形对象的准确 。 数据集还提供手- 3D 重整两只手和表达对象的新的任务 。 我们使用北极网, 一个基准方法, 用于联合重建两只手和直径的距离, RGB 和直径的图像 。 我们先提供一个直径的图像 。 我们使用双边和直径的图像 和直径对等的图像 。 。 我们提供一个直方的图像 。 。