The accurate prediction of smooth steering inputs is crucial for automotive applications because control actions with jitter might cause the vehicle system to become unstable. To address this problem in automobile lane-keeping control without the use of additional smoothing algorithms, we developed a novel soft-constrained iterative linear quadratic regulator (soft-CILQR) algorithm by integrating CILQR algorithm and a model predictive control (MPC) constraint relaxation method. We incorporated slack variables into the state and control barrier functions of the soft-CILQR solver to soften the constraints in the optimization process such that control input stabilization can be achieved in a computationally simple manner. Two types of automotive lane-keeping experiments (numerical simulations and experiments involving challenging vision-based maneuvers) were conducted with a linear system dynamics model to test the performance of the proposed soft-CILQR algorithm, and its performance was compared with that of the CILQR algorithm. In the numerical simulations, the soft-CILQR and CILQR solvers managed to drive the system toward the reference state asymptotically; however, the soft-CILQR solver obtained smooth steering input trajectories more easily than did the CILQR solver under conditions involving additive disturbances. The results of the vision-based experiments in which an ego vehicle drove in perturbed TORCS environments with various road friction settings were consistent with those of the numerical tests. The proposed soft-CILQR algorithm achieved an average runtime of 2.55 ms and is thus applicable for real-time autonomous driving scenarios.
翻译:暂无翻译