Let H be the standard Hadamard matrix of order two and let K=2^{-1/2}H. It is known that the complete weight enumerator $\ W$ of a binary self-dual code of length $n$ is an eigenvector corresponding to an eigenvalue 1 of the Kronecker power $K^{[n]}.$ For every integer $t$ in the interval [0,n] we define the derivative of order $t$, $W_{<t>},$ of $W$ in such a way that $W_{<t>}$ is in the eigenspace of $\ 1$ of the matrix $K^{[n-t]}.$ For large values of $t,$ $W_{<t>}$ contains less information about the code but has smaller length while $W_{<0>}=W$ completely determines the code. We compute the derivative of order $n-5$ for the extended Golay code of length 24, the extended quadratic residue code of length 48, and the putative [72,24,12] code and show that they are in the eigenspace of $\ 1$ of the matrix $% K^{[5]}.$ We use the derivatives to prove a new balance equation which involves the number of code vectors of given weight having 1 in a selected coordinate position. As an example, we use the balance equation to eliminate some candidates for weight enumerators of binary self-dual codes of length eight.
翻译:让H成为第二顺序的标准哈达马德矩阵,让K=2 ⁇ -1/2}H。众所周知,一个长度为$n$的二进制自我二元代码的完全重量计算器美元为W$1美元,相当于Kronecker电源1的元值1美元,K ⁇ [n]美元。对于在间隔[0,n]内每个整数美元美元,我们为24号延长的Golay代码、48号延长的等离子残余代码以及48号的直径[72,24,12]的直径位于该矩阵的1美元[K ⁇ [n-t]}。对于一个长度为$1的二进制二二进制代码的全重量计算器美元,美元等于美元。对于一个有关该代码的较大值,美元为$1美元,但长度较小,而美元则完全确定代码。我们为24号延长的Golay代码的序列的衍生物,48号延长的等离子残余代码,以及[72,24,e] 代码的直成[72,12] 的元。当量位值位于该方位数的正等号的重量位置时, 将1美元的重量用于1美元的正方方方程式的重量。