A new class of copulas, termed the MGL copula class, is introduced. The new copula originates from extracting the dependence function of the multivariate generalized log-Moyal-gamma distribution whose marginals follow the univariate generalized log-Moyal-gamma (GLMGA) distribution as introduced in \citet{li2019jan}. The MGL copula can capture nonelliptical, exchangeable, and asymmetric dependencies among marginal coordinates and provides a simple formulation for regression applications. We discuss the probabilistic characteristics of MGL copula and obtain the corresponding extreme-value copula, named the MGL-EV copula. While the survival MGL copula can be also regarded as a special case of the MGB2 copula from \citet{yang2011generalized}, we show that the proposed model is effective in regression modelling of dependence structures. Next to a simulation study, we propose two applications illustrating the usefulness of the proposed model. This method is also implemented in a user-friendly R package: \texttt{rMGLReg}.
翻译:引入了称为 MGL 千叶类的新的千叶类。 新的千叶类源自于提取多变通用日志- 摩亚- 伽玛分布的依附功能, 多变通用日志- 摩亚- 伽玛分布的边际沿著\ citet{ li2019jan} 引入的单象- 摩亚- 伽玛( GLMGAA) 分布。 MGL 的千叶类可捕捉到边缘坐标之间的非异性、 可交换性和不对称依赖性, 并为回归应用提供了简单的配方。 我们讨论的是 MGL 焦拉 的概率性特征, 并获得了相应的极端值千叶色。 虽然从\ citet{ yang2011 genalized} 引入的 MGB2 杂叶类分布的边际分布也可以被视为一个特殊案例。 我们显示, 拟议的模型对于依赖结构的回归模型是有效的。 在模拟研究之后, 我们提出两个应用程序, 说明拟议模型的有用性。 这个方法还在一个用户友好的 R 包中应用 :\ textttrMGLAGLGQ} 。