Detecting when the underlying distribution changes for the observed time series is a fundamental problem arising in a broad spectrum of applications. In this paper, we study multiple change-point localization in the high-dimensional regression setting, which is particularly challenging as no direct observations of the parameter of interest is available. Specifically, we assume we observe $\{ x_t, y_t\}_{t=1}^n$ where $ \{ x_t\}_{t=1}^n $ are $p$-dimensional covariates, $\{y_t\}_{t=1}^n$ are the univariate responses satisfying $\mathbb{E}(y_t) = x_t^\top \beta_t^* \text{ for } 1\le t \le n $ and $\{\beta_t^*\}_{t=1}^n $ are the unobserved regression coefficients that change over time in a piecewise constant manner. We propose a novel projection-based algorithm, Variance Projected Wild Binary Segmentation~(VPWBS), which transforms the original (difficult) problem of change-point detection in $p$-dimensional regression to a simpler problem of change-point detection in mean of a one-dimensional time series. VPWBS is shown to achieve sharp localization rate $O_p(1/n)$ up to a log factor, a significant improvement from the best rate $O_p(1/\sqrt{n})$ known in the existing literature for multiple change-point localization in high-dimensional regression. Extensive numerical experiments are conducted to demonstrate the robust and favorable performance of VPWBS over two state-of-the-art algorithms, especially when the size of change in the regression coefficients $\{\beta_t^*\}_{t=1}^n $ is small.


翻译:当观测到的时间序列的基本分布变化是一个在广泛应用范围内产生的根本性问题时 。 在本文中, 我们研究高维回归设置中的多变点本地化, 因为没有直接观测利息参数, 这一点特别具有挑战性 。 具体地说, 我们假设我们观察$x_ t, y_ t ⁇ t=1 ⁇ n$, 其中美元 x_ t ⁇ t=1 ⁇ n$ 是 美元 x_ t ⁇ t=1 美元 维基数的基数, $_y_ t ⁇ t=1 ⁇ n rational=1 美元是 univarite religize $malb{( y_ p} (y_ t) y_t) = x_ t ⁇ t\\\\ t{t{ {tun} 。 我们假设我们观察到$ xxxx_ xx_ t_ t ⁇ t_ t ⁇ t=1 ⁇ n $ 美元, 美元的基数值的基数值变化是一个未知的基数 问题。 我们提议一种基于预测的算算算算算算算算算的算的算算的算算的法, 度变了原( 美元) talyaltime_ rolate_ legal- laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
7+阅读 · 2021年3月15日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员