Classes of simple polynomial and simple trigonometric splines given by Fourier series are considered. It is shown that the class of simple trigonometric splines includes the class of simple polynomial splines. For some parameter values, the polynomial splines coincide with the trigonometric ones; this allows to transfer to such trigonometric splines all the results obtained for polynomial splines. Thus, it was possible to combine two powerful theories - the theory of trigonometric Fourier series and the theory of simple polynomial splines. The above material is illustrated by numerous examples.
翻译:Fourier 系列给出的简单多元和简单三角样条的类别得到考虑。 显示简单的三角样条类别包括简单的多元样条的类别。 对于某些参数值, 多元样条与三角样条相吻合; 这样可以将多元样条的所有结果都转移到这种三角样条。 因此, 可以将两个强大的理论( 三角样条的理论和简单多面样条的理论)结合起来。 以上材料的例子很多 。