Historically, to bound the mean for small sample sizes, practitioners have had to choose between using methods with unrealistic assumptions about the unknown distribution (e.g., Gaussianity) and methods like Hoeffding's inequality that use weaker assumptions but produce much looser (wider) intervals. In 1969, Anderson (1969) proposed a mean confidence interval strictly better than or equal to Hoeffding's whose only assumption is that the distribution's support is contained in an interval $[a,b]$. For the first time since then, we present a new family of bounds that compares favorably to Anderson's. We prove that each bound in the family has {\em guaranteed coverage}, i.e., it holds with probability at least $1-\alpha$ for all distributions on an interval $[a,b]$. Furthermore, one of the bounds is tighter than or equal to Anderson's for all samples. In simulations, we show that for many distributions, the gain over Anderson's bound is substantial.


翻译:在历史上,为了约束小样本大小的平均值,从业者不得不在使用对未知分布(例如高森)不切实际的假设的方法和Hoffding的不平等方法之间作出选择,前者使用较弱的假设,而后者则产生更松(大)的间隔。1969年,Anderson(1969年)提出一个平均信任间隔,严格地说优于或等于Hoffding的假设,后者的唯一假设是分配支持包含在$[a,b]$的间隔内。自那以后,我们首次提出了一个新的界限组,其范围比Anderson的要好。我们证明家庭中的每一个界限都有保证覆盖值,也就是说,对于一个间隔 $[a,b]$的所有分布,其概率至少为1\阿尔法$。此外,其中一个界限比Anderson的所有样品的长度都紧或等于Anderson。在模拟中显示,对于许多分布而言,Anderson的收益是巨大的。

0
下载
关闭预览

相关内容

【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
32+阅读 · 2020年3月30日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月12日
PLEX: Towards Practical Learned Indexing
Arxiv
0+阅读 · 2021年8月11日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员