In the field of face recognition, it is always a hot research topic to improve the loss solution to make the face features extracted by the network have greater discriminative power. Research works in recent years has improved the discriminative power of the face model by normalizing softmax to the cosine space step by step and then adding a fixed penalty margin to reduce the intra-class distance to increase the inter-class distance. Although a great deal of previous work has been done to optimize the boundary penalty to improve the discriminative power of the model, adding a fixed margin penalty to the depth feature and the corresponding weight is not consistent with the pattern of data in the real scenario. To address this issue, in this paper, we propose a novel loss function, InterFace, releasing the constraint of adding a margin penalty only between the depth feature and the corresponding weight to push the separability of classes by adding corresponding margin penalties between the depth features and all weights. To illustrate the advantages of InterFace over a fixed penalty margin, we explained geometrically and comparisons on a set of mainstream benchmarks. From a wider perspective, our InterFace has advanced the state-of-the-art face recognition performance on five out of thirteen mainstream benchmarks. All training codes, pre-trained models, and training logs, are publicly released \footnote{$https://github.com/iamsangmeng/InterFace$}.
翻译:在面部识别领域,改进损失解决方案,使网络所提取的面部特征具有更大的歧视性力量,这始终是一个热门的研究课题。近年来的研究工作提高了面部模型的歧视性力量,将软马克思对焦间距逐步正常化,然后增加固定的罚款幅度,以减少阶级内部距离,以增加阶级间的距离。虽然以前做了大量工作,优化边界处罚,改善模式的歧视性力量,在深度特征上增加固定的幅度罚款,相应的重量与真实情景中的数据模式不相符。为了解决这一问题,我们在本文中提出了一个新的损失功能,即InterFace, 释放限制在深度特征和相应重量之间增加边际罚款的限制,以通过增加深度特征和所有重量之间的相应的差幅,推推延班级间距。为了说明InterFace对固定处罚幅度的优势,我们从地理角度解释了一套主流基准的比值和比较。从更广的角度来看,我们的InterFace 推进了州/州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-级-级-级培训-州-州-州-州-级-州-州-州-级-级-级-级-级-级-级-级-级-级-州-州-州-州-州-州-州-州-州-州-州-州-州-级-级培训-级-级-级培训-级-级-级-级-级-州-州-州-州-州-州-州-州-级培训-