DER is the primary metric to evaluate diarization performance while facing a dilemma: the errors in short utterances or segments tend to be overwhelmed by longer ones. Short segments, e.g., `yes' or `no,' still have semantic information. Besides, DER overlooks errors in less-talked speakers. Although JER balances speaker errors, it still suffers from the same dilemma. Considering all those aspects, duration error, segment error, and speaker-weighted error constituting a complete diarization evaluation, we propose a Balanced Error Rate (BER) to evaluate speaker diarization. First, we propose a segment-level error rate (SER) via connected sub-graphs and adaptive IoU threshold to get accurate segment matching. Second, to evaluate diarization in a unified way, we adopt a speaker-specific harmonic mean between duration and segment, followed by a speaker-weighted average. Third, we analyze our metric via the modularized system, EEND, and the multi-modal method on real datasets. SER and BER are publicly available at https://github.com/X-LANCE/BER.


翻译:DER是评估二分化在面临进退两难时的表现的主要衡量标准:短话或片段的错误往往被长话或片段的错误压得过,短段,例如“是”或“否”,仍然有语义信息;此外,DER忽略了发言较少者中的错误。虽然JER平衡了发言者的错误,但它仍然有同样的难题。考虑到所有这些方面、持续时间错误、部分错误以及构成完全分化评价的发言者体重错误,我们建议平衡错误率(BER)来评价发言者的diariz化。首先,我们建议通过连接子图和适应性IoU阈值的分层错误率(SER)来获得准确的分段匹配。第二,为了以统一的方式评价分段之间的分级化,我们采用了一个针对特定发言者的分段和分段之间的调,然后是按发言者体重平均。第三,我们通过模块化系统(END)和真实数据集的多调制方法分析我们的衡量尺度。SER和BER可以公开查阅https://githhubub.com/X-Lans/BER/BER。

0
下载
关闭预览

相关内容

指分类错误的样本数占样本总数的比例。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员