We propose the Temporal Point Cloud Networks (TPCN), a novel and flexible framework with joint spatial and temporal learning for trajectory prediction. Unlike existing approaches that rasterize agents and map information as 2D images or operate in a graph representation, our approach extends ideas from point cloud learning with dynamic temporal learning to capture both spatial and temporal information by splitting trajectory prediction into both spatial and temporal dimensions. In the spatial dimension, agents can be viewed as an unordered point set, and thus it is straightforward to apply point cloud learning techniques to model agents' locations. While the spatial dimension does not take kinematic and motion information into account, we further propose dynamic temporal learning to model agents' motion over time. Experiments on the Argoverse motion forecasting benchmark show that our approach achieves the state-of-the-art results.
翻译:我们提出时空点云网络(TPCN),这是一个具有联合空间和时间学习以进行轨迹预测的新颖和灵活的框架。与将物剂和地图信息作为2D图像或以图形表示的方式运行的现有方法不同,我们的方法从点云学习和动态时间学习扩展想法,通过将轨迹预测分成空间和时间两个层面来捕捉空间和时间信息。在空间层面,可以将物剂视为一个没有顺序的点集,因此将点云学习技术直接应用到模型物剂的位置。虽然空间层面不考虑动态和运动信息,但我们进一步建议对模型物剂运动进行动态时间学习。关于Argovers运动预测基准的实验表明,我们的方法实现了最新的结果。