We propose the Temporal Point Cloud Networks (TPCN), a novel and flexible framework with joint spatial and temporal learning for trajectory prediction. Unlike existing approaches that rasterize agents and map information as 2D images or operate in a graph representation, our approach extends ideas from point cloud learning with dynamic temporal learning to capture both spatial and temporal information by splitting trajectory prediction into both spatial and temporal dimensions. In the spatial dimension, agents can be viewed as an unordered point set, and thus it is straightforward to apply point cloud learning techniques to model agents' locations. While the spatial dimension does not take kinematic and motion information into account, we further propose dynamic temporal learning to model agents' motion over time. Experiments on the Argoverse motion forecasting benchmark show that our approach achieves the state-of-the-art results.


翻译:我们提出时空点云网络(TPCN),这是一个具有联合空间和时间学习以进行轨迹预测的新颖和灵活的框架。与将物剂和地图信息作为2D图像或以图形表示的方式运行的现有方法不同,我们的方法从点云学习和动态时间学习扩展想法,通过将轨迹预测分成空间和时间两个层面来捕捉空间和时间信息。在空间层面,可以将物剂视为一个没有顺序的点集,因此将点云学习技术直接应用到模型物剂的位置。虽然空间层面不考虑动态和运动信息,但我们进一步建议对模型物剂运动进行动态时间学习。关于Argovers运动预测基准的实验表明,我们的方法实现了最新的结果。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
184+阅读 · 2020年6月21日
最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
299+阅读 · 2020年6月16日
专知会员服务
55+阅读 · 2020年3月16日
深度多模态表示学习综述论文,22页pdf
专知
31+阅读 · 2020年6月21日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年4月27日
VIP会员
相关VIP内容
专知会员服务
184+阅读 · 2020年6月21日
最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
299+阅读 · 2020年6月16日
专知会员服务
55+阅读 · 2020年3月16日
相关资讯
深度多模态表示学习综述论文,22页pdf
专知
31+阅读 · 2020年6月21日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员