Research in deep learning models to forecast traffic intensities has gained great attention in recent years due to their capability to capture the complex spatio-temporal relationships within the traffic data. However, most state-of-the-art approaches have designed spatial-only (e.g. Graph Neural Networks) and temporal-only (e.g. Recurrent Neural Networks) modules to separately extract spatial and temporal features. However, we argue that it is less effective to extract the complex spatio-temporal relationship with such factorized modules. Besides, most existing works predict the traffic intensity of a particular time interval only based on the traffic data of the previous one hour of that day. And thereby ignores the repetitive daily/weekly pattern that may exist in the last hour of data. Therefore, we propose a Unified Spatio-Temporal Graph Convolution Network (USTGCN) for traffic forecasting that performs both spatial and temporal aggregation through direct information propagation across different timestamp nodes with the help of spectral graph convolution on a spatio-temporal graph. Furthermore, it captures historical daily patterns in previous days and current-day patterns in current-day traffic data. Finally, we validate our work's effectiveness through experimental analysis, which shows that our model USTGCN can outperform state-of-the-art performances in three popular benchmark datasets from the Performance Measurement System (PeMS). Moreover, the training time is reduced significantly with our proposed USTGCN model.


翻译:近年来,对预测交通强度的深层次学习模型的研究受到极大关注,原因是这些模型能够捕捉交通数据中复杂的时空关系,然而,大多数最先进的方法都设计了空间专用模块(例如,图形神经网络)和时间专用模块(例如,经常性神经网络),分别提取空间和时间特征。然而,我们认为,利用与这些要素化模块的复杂时空关系来提取复杂的空间-时空关系,效果较差。此外,大多数现有工作仅根据该日前一小时的交通数据预测特定时段的交通强度。因此,大多数最先进的方法忽略了在最后一小时的数据中可能存在的重复的日/周模式(例如,图形神经网络)和时间专用模块(例如,经常性神经网络),以便分别提取空间和时间特征。然而,我们认为,通过在不同时标点上的直接信息传播,借助在空间-时空图上的频谱图形变换,将特定时间间隔的时间间隔的交通强度预计值预测。此外,它从前几天的每日历史模式中收集了历史模式/周期模式,而G最近的数据则显示我们的数据的运行状况。

0
下载
关闭预览

相关内容

【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
阿里流行音乐趋势预测-深度学习LSTM网络实现代码分享
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关VIP内容
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
相关资讯
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
阿里流行音乐趋势预测-深度学习LSTM网络实现代码分享
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员