Recently,~\citet{liu:arxiv:2019} studied the rather challenging problem of time series forecasting from the perspective of compressed sensing. They proposed a no-learning method, named Convolution Nuclear Norm Minimization (CNNM), and proved that CNNM can exactly recover the future part of a series from its observed part, provided that the series is convolutionally low-rank. While impressive, the convolutional low-rankness condition may not be satisfied whenever the series is far from being seasonal, and is in fact brittle to the presence of trends and dynamics. This paper tries to approach the issues by integrating a learnable, orthonormal transformation into CNNM, with the purpose for converting the series of involute structures into regular signals of convolutionally low-rank. We prove that the resulted model, termed Learning-Based CNNM (LbCNNM), strictly succeeds in identifying the future part of a series, as long as the transform of the series is convolutionally low-rank. To learn proper transformations that may meet the required success conditions, we devise an interpretable method based on Principal Component Purist (PCP). Equipped with this learning method and some elaborate data argumentation skills, LbCNNM not only can handle well the major components of time series (including trends, seasonality and dynamics), but also can make use of the forecasts provided by some other forecasting methods; this means LbCNNM can be used as a general tool for model combination. Extensive experiments on 100,452 real-world time series from TSDL and M4 demonstrate the superior performance of LbCNNM.


翻译:最近, ⁇ citet{liu:arxiv:2019}从压缩遥感的角度研究了相当具有挑战性的时间序列预测问题。他们提出了一种不学习的方法,名为“革命核规范最小化 ” ( CNNM ), 并证明“CNNM” 完全可以从所观察的系列中恢复未来的一部分, 只要该系列是进化式的低级。 虽然令人印象深刻, 但是当系列远不是季节性的时, 低级状态可能无法满足。 事实上, 与趋势和动态存在相近。 本文试图通过将可学习的、 异常的转换纳入“ CNMNEM ” ( CN ) 来应对问题, 目的是将一系列变异性结构转换成正常的低级信号。 我们证明, 最终的模式, 叫做“ 学习型” CNNMM( LbCNNM) ( L) ( Lb), 严格地成功地确定了一个系列的未来部分, 只要该系列的变异性模型是分级的, 。 要了解可能符合所需成功条件的正常的SD, 我们根据主构件CNML4CP 制定某种可解释的方法, 方法,,, 和高级的周期预测方法,, 也提供了一种高级的精细化数据。

0
下载
关闭预览

相关内容

在数学(特别是功能分析)中,卷积是对两个函数(f和g)的数学运算,产生三个函数,表示第一个函数的形状如何被另一个函数修改。 卷积一词既指结果函数,又指计算结果的过程。 它定义为两个函数的乘积在一个函数反转和移位后的积分。 并针对所有shift值评估积分,从而生成卷积函数。
专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年6月14日
Arxiv
0+阅读 · 2021年6月5日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员