We develop novel learning rates for conditional mean embeddings by applying the theory of interpolation for reproducing kernel Hilbert spaces (RKHS). We derive explicit, adaptive convergence rates for the sample estimator under the misspecifed setting, where the target operator is not Hilbert-Schmidt or bounded with respect to the input/output RKHSs. We demonstrate that in certain parameter regimes, we can achieve uniform convergence rates in the output RKHS. We hope our analyses will allow the much broader application of conditional mean embeddings to more complex ML/RL settings involving infinite dimensional RKHSs and continuous state spaces.
翻译:我们通过应用内核Hilbert空间(RKHS)的内插理论,为有条件的中值嵌入开发新的学习率。 我们为被误探环境中的样本估计者(目标操作者不是Hilbert-Schmidt)或与输入/输出RKHS相约束的样本估计者(RKHS)获得明确的适应性趋同率。 我们证明在某些参数系统中,我们能够在输出RKHS中实现统一的趋同率。 我们希望我们的分析将允许将有条件的中值嵌入更加复杂的ML/RL环境,包括无限的RKHS和连续的状态空间。