In this paper, an effective pipeline to automatic 4D Facial Expression Recognition (4D FER) is proposed. It combines two growing but disparate ideas in Computer Vision -- computing the spatial facial deformations using tools from Riemannian geometry and magnifying them using temporal filtering. The flow of 3D faces is first analyzed to capture the spatial deformations based on the recently-developed Riemannian approach, where registration and comparison of neighboring 3D faces are led jointly. Then, the obtained temporal evolution of these deformations are fed into a magnification method in order to amplify the facial activities over the time. The latter, main contribution of this paper, allows revealing subtle (hidden) deformations which enhance the emotion classification performance. We evaluated our approach on BU-4DFE dataset, the state-of-art 94.18% average performance and an improvement that exceeds 10% in classification accuracy, after magnifying extracted geometric features (deformations), are achieved.
翻译:在本文中,提出了一条自动四维面部表情识别(4D FER)的有效管道。它结合了计算机视野中两个不断增长但互不相干的想法 -- -- 使用来自里曼语几何学的工具计算空间面部变形,并使用时间过滤法放大这些变形。我们首先根据最近开发的里曼语方法分析了三维面孔的流量,以捕捉空间变形,该方法将相邻三维面部的登记和比较联合引导在一起。随后,这些变形获得的时间演进被注入放大法中,以扩大一段时间的面部活动。后者是本文的主要贡献,能够揭示微妙(隐藏)变形,从而增强情感分类性能。我们评估了我们在BU-4DFE数据集方面的做法,以及94.18%的平均状态,在放大了提取的几何特征(变形)之后,在分类精度方面实现了10%以上的改进。