In this paper, we compared the general forms of CCA and PLS on three simulated and two empirical datasets, all having large sample sizes. We took successively smaller subsamples of these data to evaluate sensitivity, reliability, and reproducibility. In null data having no correlation within or between blocks, both methods showed equivalent false positive rates across sample sizes. Both methods also showed equivalent detection in data with weak but reliable effects until sample sizes drop below n=50. In the case of strong effects, both methods showed similar performance unless the correlations of items within one data block were high. For PLS, the results were reproducible across sample sizes for strong effects, except at the smallest sample sizes. On the contrary, the reproducibility for CCA declined when the within-block correlations were high. This was ameliorated if a principal components analysis (PCA) was performed and the component scores used to calculate the cross-block matrix. The outcome of our examination gives three messages. First, for data with reasonable within and between block structure, CCA and PLS give comparable results. Second, if there are high correlations within either block, this can compromise the reliability of CCA results. This known issue of CCA can be remedied with PCA before cross-block calculation. This, however, assumes that the PCA structure is stable for a given sample. Third, null hypothesis testing does not guarantee that the results are reproducible, even with large sample sizes. This final outcome suggests that both statistical significance and reproducibility be assessed for any data.


翻译:在本文中,我们比较了三个模拟数据和两个实验数据集的共同国家评析和PLS的一般形式,这三个模拟数据和两个实验数据集都具有较大的抽样规模。我们连续对这些数据进行了较小的子样本,以评估敏感度、可靠性和可复制性。在无关联的区块内或区块间数据中,两种方法在抽样大小之间都显示出相等的假正率。两种方法还显示在数据中检测到微弱但可靠的效果,直到样本大小下降到n=50以下。在效果强劲的情况下,两种方法都表现出类似的性能,除非一个数据区块内项目的相关性很高。对于PLS,结果在抽样大小之间可以重新复制。对于PLS,结果在抽样大小之间,除了最小的样本大小之外,我们连续复制。相反,如果在区块内的相关性很高,那么在相互对共同国家评分的相互关系较高,那么如果进行主要组成部分分析(PCA)和用来计算交叉矩阵的任何组成部分的评分数,则会得到改进。我们进行的检查的结果是三个。首先,对于在区块结构内和相互比较结构之间的数据具有合理性的数据具有可比较的结果。第二个问题,即使在统计结构内具有较高的相关性,那么,那么,在计算中,这种结果之中的可靠性的这种结果是可靠的,那么,这种结果的推论的推论的推而后,这种结果的推而具有较的推而具有较的推。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月16日
Arxiv
0+阅读 · 2022年8月13日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员