A longstanding challenge surrounding deep learning algorithms is unpacking and understanding how they make their decisions. Explainable Artificial Intelligence (XAI) offers methods to provide explanations of internal functions of algorithms and reasons behind their decisions in ways that are interpretable and understandable to human users. . Numerous XAI approaches have been developed thus far, and a comparative analysis of these strategies seems necessary to discern their relevance to clinical prediction models. To this end, we first implemented two prediction models for short- and long-term outcomes of traumatic brain injury (TBI) utilizing structured tabular as well as time-series physiologic data, respectively. Six different interpretation techniques were used to describe both prediction models at the local and global levels. We then performed a critical analysis of merits and drawbacks of each strategy, highlighting the implications for researchers who are interested in applying these methodologies. The implemented methods were compared to one another in terms of several XAI characteristics such as understandability, fidelity, and stability. Our findings show that SHAP is the most stable with the highest fidelity but falls short of understandability. Anchors, on the other hand, is the most understandable approach, but it is only applicable to tabular data and not time series data.


翻译:围绕深层次学习算法的长期挑战是解开和理解它们如何作出决定。可以解释的人工智能(XAI)提供了各种方法来解释算法的内部功能和其决定背后的理由,其方式可以解释和理解人类用户。迄今为止,已经制定了许多XAI方法,对这些战略进行比较分析似乎是必要的,以辨别它们与临床预测模型的相关性。为此,我们首先使用结构化的表格和时间序列物理数据对创伤性脑损伤的短期和长期结果进行了两种预测模型。使用了六种不同的解释技术来描述地方和全球两级的预测模型。我们随后对每项战略的优点和缺点进行了批判性分析,突出了对有兴趣应用这些方法的研究人员的影响。所实施的方法在可理解性、忠诚性和稳定性等几个XAI特征方面被比较为另一个特征。我们的研究结果表明,SHAP是最高忠诚度最稳定但无法理解性最差的。另一端,紧要者是最难理解性的方法,但数据只适用于列表。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
Top
微信扫码咨询专知VIP会员