A $k$-server Private Information Retrieval (PIR) code is a binary linear $[m,s]$-code admitting a generator matrix such that for every integer $i$ with $1\le i\le s$ there exist $k$ disjoint subsets of columns (called recovery sets) that add up to the vector of weight one, with the single $1$ in position $i$. As shown in \cite{Fazeli1}, a $k$-server PIR code is useful to reduce the storage overhead of a traditional $k$-server PIR protocol. Finding $k$-server PIR codes with a small blocklength for a given dimension has recently become an important research challenge. In this work, we propose new constructions of PIR codes from combinatorial structures, introducing the notion of $k$-partial packing. Several bounds over the existing literature are improved.
翻译:$k$-server私人信息检索代码(PIR)是一种二进制线性代码 $(m),s) 代码允许生成器矩阵,这样,对于每整数美元($1le i\le s$),每一整数美元(所谓的回收装置)就有一个折合重量矢量的列子(所谓的回收装置),单一美元为一美元。如\ cite{Fazeli1}所示,一个 $k$-server PIR代码有助于减少传统的$k$-server PIR协议的存储间接费用。为某个特定层面找到一个小块长的折叠式服务器 PIR代码最近已成为一项重要的研究挑战。在这项工作中,我们建议从组合结构中建造新的PIR代码,引入美元部分包装的概念。现有文献的若干界限得到了改进。