Constrained least squares problems arise in many applications. Their memory and computation costs are expensive in practice involving high-dimensional input data. We employ the so-called "sketching" strategy to project the least squares problem onto a space of a much lower "sketching dimension" via a random sketching matrix. The key idea of sketching is to reduce the dimension of the problem as much as possible while maintaining the approximation accuracy. Tensor structure is often present in the data matrices of least squares, including linearized inverse problems and tensor decompositions. In this work, we utilize a general class of row-wise tensorized sub-Gaussian matrices as sketching matrices in constrained optimizations for the sketching design's compatibility with tensor structures. We provide theoretical guarantees on the sketching dimension in terms of error criterion and probability failure rate. In the context of unconstrained linear regressions, we obtain an optimal estimate for the sketching dimension. For optimization problems with general constraint sets, we show that the sketching dimension depends on a statistical complexity that characterizes the geometry of the underlying problems. Our theories are demonstrated in a few concrete examples, including unconstrained linear regression and sparse recovery problems.


翻译:在许多应用中, 最小的折叠方块问题会出现于许多应用程序中。 它们的内存和计算成本在实践上涉及高维输入数据, 费用昂贵。 我们使用所谓的“ 预置” 战略, 通过随机草图矩阵将最小方块问题投射到一个低得多的“ 预置维度” 空间中。 草图的关键想法是尽可能减少问题的维度, 并同时保持近似准确性。 最小方块的数据矩阵中往往存在感应结构, 包括线性反向问题和高温分解问题。 在这项工作中, 我们使用一整类行的单向偏振荡亚Gaussian 矩阵作为草图矩阵, 用于将最小方块问题投射到草图设计与强力结构兼容性较弱的空间中。 我们从理论上保证草图维度的维度在错误标准和概率失常率率率率率方面。 在未受限制的线性回归中, 我们获得一个最优估度的图度估计值。 关于优化问题集问题, 我们表明, 草图维度的维度取决于统计复杂性, 其特征是少数的回归, 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月22日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员