This paper tackles the problem of table structure parsing (TSP) from images in the wild. In contrast to existing studies that mainly focus on parsing well-aligned tabular images with simple layouts from scanned PDF documents, we aim to establish a practical table structure parsing system for real-world scenarios where tabular input images are taken or scanned with severe deformation, bending or occlusions. For designing such a system, we propose an approach named Cycle-CenterNet on the top of CenterNet with a novel cycle-pairing module to simultaneously detect and group tabular cells into structured tables. In the cycle-pairing module, a new pairing loss function is proposed for the network training. Alongside with our Cycle-CenterNet, we also present a large-scale dataset, named Wired Table in the Wild (WTW), which includes well-annotated structure parsing of multiple style tables in several scenes like the photo, scanning files, web pages, \emph{etc.}. In experiments, we demonstrate that our Cycle-CenterNet consistently achieves the best accuracy of table structure parsing on the new WTW dataset by 24.6\% absolute improvement evaluated by the TEDS metric. A more comprehensive experimental analysis also validates the advantages of our proposed methods for the TSP task.
翻译:本文从野生图像中解析表格结构( TSP ) 。 与现有研究相比, 我们主要侧重于从扫描的 PDF 文档中用简单布局来解析非常相近的列表表图像, 我们的目标是为真实世界情景建立一个实用的表格结构解析系统, 以严重变形、 弯曲或分解的方式拍摄或扫描表格图像。 为了设计这样一个系统, 我们提议了一种方法, 在 CenterNet 顶部用一个新颖的循环涂层模块来同时检测和将表格单元格分组成结构化表格。 在循环涂层模块中, 为网络培训提议一个新的配对损功能。 除了我们的循环- Center Net 之外, 我们还展示了一个大型的表格结构解析系统, 名为 Wrid (WTW) 中的 Wird 表格, 其中包括在图片、 扫描文件、 网页 和\emph{etc.} 等多个场景中以注释性结构解析。 在实验中, 我们的 Center Net 也显示我们的循环内单元格网络 持续实现表格结构结构最精确的精确的准确性数据结构, 分析 。