We consider the problem of optimizing the placement of stubborn agents in a social network in order to maximally influence the population. We assume the network contains stubborn users whose opinions do not change, and non-stubborn users who can be persuaded. We further assume the opinions in the network are in an equilibrium that is common to many opinion dynamics models, including the well-known DeGroot model. We develop a discrete optimization formulation for the problem of maximally shifting the equilibrium opinions in a network by targeting users with stubborn agents. The opinion objective functions we consider are the opinion mean, the opinion variance, and the number of individuals whose opinion exceeds a fixed threshold. We show that the mean opinion is a monotone submodular function, allowing us to find a good solution using a greedy algorithm. We find that on real social networks in Twitter consisting of tens of thousands of individuals, a small number of stubborn agents can non-trivially influence the equilibrium opinions. Furthermore, we show that our greedy algorithm outperforms several common benchmarks. We then propose an opinion dynamics model where users communicate noisy versions of their opinions, communications are random, users grow more stubborn with time, and there is heterogeneity is how users' stubbornness increases. We prove that under fairly general conditions on the stubbornness rates of the individuals, the opinions in this model converge to the same equilibrium as the DeGroot model, despite the randomness and user heterogeneity in the model.
翻译:我们考虑在社会网络中最优化固执分子安置的问题,以便最大限度地影响人口。我们假设网络包含顽固的用户,其观点不会改变,而且没有僵硬的用户是可以说服的。我们进一步假设网络中的观点是许多观点动态模型,包括众所周知的DeGroot模型,都有一个共同的平衡观点。我们为在一个网络中通过以顽固分子为对象的用户来最大程度改变平衡观点的问题开发了一个独立的优化配方。我们所考虑的观点客观功能是意见的平均值、意见差异和观点超过固定门槛的个人数量。我们表明,该意见是一种单一的单调子模式功能,允许我们使用贪婪的算法找到一个好的解决办法。我们在由成千上万个人组成的推特上发现,少数固执分子可以对平衡观点产生非边际的影响。此外,我们展示了我们贪婪的算法模式超越了几个共同基准。我们然后提出一种观点动态模型,用户在表达其观点的杂乱版本、通信是随机的、用户在时间上增长的顽固性、用户在时间上增长的顽固性,而顽固的用户在一般观点中不断增长的速度速度则证明。