We consider the problem of optimizing the placement of stubborn agents in a social network in order to maximally influence the population. We assume the network contains stubborn users whose opinions do not change, and non-stubborn users who can be persuaded. We further assume the opinions in the network are in an equilibrium that is common to many opinion dynamics models, including the well-known DeGroot model. We develop a discrete optimization formulation for the problem of maximally shifting the equilibrium opinions in a network by targeting users with stubborn agents. The opinion objective functions we consider are the opinion mean, the opinion variance, and the number of individuals whose opinion exceeds a fixed threshold. We show that the mean opinion is a monotone submodular function, allowing us to find a good solution using a greedy algorithm. We find that on real social networks in Twitter consisting of tens of thousands of individuals, a small number of stubborn agents can non-trivially influence the equilibrium opinions. Furthermore, we show that our greedy algorithm outperforms several common benchmarks. We then propose an opinion dynamics model where users communicate noisy versions of their opinions, communications are random, users grow more stubborn with time, and there is heterogeneity is how users' stubbornness increases. We prove that under fairly general conditions on the stubbornness rates of the individuals, the opinions in this model converge to the same equilibrium as the DeGroot model, despite the randomness and user heterogeneity in the model.


翻译:我们考虑在社会网络中最优化固执分子安置的问题,以便最大限度地影响人口。我们假设网络包含顽固的用户,其观点不会改变,而且没有僵硬的用户是可以说服的。我们进一步假设网络中的观点是许多观点动态模型,包括众所周知的DeGroot模型,都有一个共同的平衡观点。我们为在一个网络中通过以顽固分子为对象的用户来最大程度改变平衡观点的问题开发了一个独立的优化配方。我们所考虑的观点客观功能是意见的平均值、意见差异和观点超过固定门槛的个人数量。我们表明,该意见是一种单一的单调子模式功能,允许我们使用贪婪的算法找到一个好的解决办法。我们在由成千上万个人组成的推特上发现,少数固执分子可以对平衡观点产生非边际的影响。此外,我们展示了我们贪婪的算法模式超越了几个共同基准。我们然后提出一种观点动态模型,用户在表达其观点的杂乱版本、通信是随机的、用户在时间上增长的顽固性、用户在时间上增长的顽固性,而顽固的用户在一般观点中不断增长的速度速度则证明。

3
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
How Developers Extract Functions: An Experiment
Arxiv
0+阅读 · 2022年9月2日
Arxiv
0+阅读 · 2022年8月31日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员