The Galois inner product is a generalization of the Euclidean inner product and Hermitian inner product. The Galois hull of a linear code is the intersection of itself and its Galois dual code, which has aroused the interest of researchers in these years. In this paper, we study Galois hulls of linear codes. Firstly, the symmetry of the dimensions of Galois hulls is found. Some new necessary and sufficient conditions for linear codes being Galois self-orthogonal codes, Galois self-dual codes and Galois linear complementary dual codes are characterized. Then, based on these properties, we develop the previous theory and propose explicit methods to construct Galois self-orthogonal codes of lengths $n+2i$ ($i\geq 0$) and $n+2i+1$ ($i\geq 1$) from Galois self-orthogonal codes of length $n$. As applications, linear codes of lengths $n+2i$ and $n+2i+1$ with Galois hulls of arbitrary dimensions are derived immediately. After this, two new classes of Hermitian self-orthogonal MDS codes are also constructed. Finally, applying all the results to the constructions of entanglement-assisted quantum error-correcting codes (EAQECCs), many new EAQECCs and MDS EAQECCs with rates greater than or equal to $\frac{1}{2}$ and positive net rates can be obtained.


翻译:Galois内部产品是Euclidean内部产品和Hermitian内部产品的概括性。 Galois 线性代码的外壳是其本身及其Galois双重代码的交叉点,这引起了研究人员对这些年的兴趣。在本文中,我们研究了Galois 内壳的线性代码。首先,发现了Galois 内壳尺寸的对称性。对于线性代码来说,有一些新的必要和充足的条件,即Galois 内部或内部编码、Galois 内部编码和Galois 线性补充双重代码。然后,根据这些特性,我们开发了先前的理论,并提出了明确的方法,以构建Galois 内部-orogoin代码$+2美元(美元+2美元+美元)和Galois 内部编码(美元+2美元和Galois),在此之后,将两个新的内部经济共同体内部经济共同体内部汇率和内部货币编码的正值值值值值值值调整为最大。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月7日
Arxiv
0+阅读 · 2022年12月7日
Arxiv
0+阅读 · 2022年12月6日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员