Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of standard stabilizer quantum error-correcting codes, which can be possibly constructed from any classical codes by relaxing self-orthogonal condition with the help of pre-shared entanglement between the sender and the receiver. In this paper, by using generalized Reed-Solomon codes, we construct two families of entanglement-assisted quantum error-correcting MDS (EAQMDS) codes with parameters $[[\frac{b({q^2}-1)}{a}+\frac{{q^2} - 1}{a}, \frac{b({q^2}-1)}{a}+\frac{{q^2}-1}{a}-2d+c+2,d;c]]_q$, where $q$ is a prime power and $a| (q+1)$. Among our constructions, the EAQMDS codes have much larger minimum distance than the known EAQMDS codes with the same length and consume the same number of ebits. Moreover, some of the lengths of ours EAQMDS codes may not be divisors of $q^2\pm 1$, which are new and different from all the previously known ones.
翻译:连接协助的量子错误校正(EAQEC)代码是标准稳定器量子错误校正代码的统称化。 标准稳定器量子错误校正代码可以通过在发件人和接收人之间预先共享的纠缠下,通过在发送人和接收人之间预先共享的纠缠中,放松自上性状态,从任何古典代码中构建。 在本文中,我们使用通用 Reed- Solomon 代码, 构建了两个串联协助量子错误校正代码( EAQMDS ) 的组合。 在我们的构造中, EAQMDS 代码的最小距离大大大于已知的 EAQMDS 代码, 长度相同, 消费了相同的电子比特数 。 此外, 一些已知的 EQQQQMD2 的新的代码中, 可能不是所有已知的 AL QMD 。