Common statistical measures of uncertainty like $p$-values and confidence intervals quantify the uncertainty due to sampling, that is, the uncertainty due to not observing the full population. In practice, populations change between locations and across time. This makes it difficult to gather knowledge that transfers across data sets. We propose a measure of uncertainty that quantifies the distributional uncertainty of a statistical estimand with respect to Kullback-Liebler divergence, that is, the sensitivity of the parameter under general distributional perturbations within a Kullback-Liebler divergence ball. If the signal-to-noise ratio is small, distributional uncertainty is a monotonous transformation of the signal-to-noise ratio. In general, however, it is a different concept and corresponds to a different research question. Further, we propose measures to estimate the stability of parameters with respect to directional or variable-specific shifts. We also demonstrate how the measure of distributional uncertainty can be used to prioritize data collection for better estimation of statistical parameters under shifted distribution. We evaluate the performance of the proposed measure in simulations and real data and show that it can elucidate the distributional (in-)stability of an estimator with respect to certain shifts and give more accurate estimates of parameters under shifted distribution only requiring to collect limited information from the shifted distribution.


翻译:通用的不确定性统计计量标准,如美元价值和信心间隔,以数量表示抽样造成的不确定性,即不观察整个人口造成的不确定性。在实践中,不同地点和不同时间的人口变化。这就使得难以收集跨数据集传输的知识。我们提出了一种衡量不确定性的尺度,以量化Kullback-Liebler差异方面的统计估计值分布不确定性,即,在Kullback-Liebler差异中一般分布扰动状态下参数的敏感度。如果信号对音比小,则分布不确定性是信号对音比的单一转换。但是,一般来说,这是一个不同的概念,对应不同的研究问题。此外,我们提出了衡量参数在方向或可变具体变化方面的稳定性的措施。我们还表明,如何利用分配不确定性的测量度来确定数据收集的优先次序,以更好地估计在变化分布过程中的统计参数。我们评估了在模拟和真实数据中拟议计量的绩效,这是对信号对音比的单一转换。但一般来说,这是一个不同的概念,与不同的研究问题对应。我们提出了一些措施,用以估计参数在方向或可变具体变化方面,我们还表明如何使用分配的尺度来确定数据收集,以便更精确地反映分配的分布,只能根据某些分配的参数的变化。

0
下载
关闭预览

相关内容

专知会员服务
47+阅读 · 2021年4月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
0+阅读 · 2021年6月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员