Recently, by introducing large-scale dataset and strong transformer network, video-language pre-training has shown great success especially for retrieval. Yet, existing video-language transformer models do not explicitly fine-grained semantic align. In this work, we present Object-aware Transformers, an object-centric approach that extends video-language transformer to incorporate object representations. The key idea is to leverage the bounding boxes and object tags to guide the training process. We evaluate our model on three standard sub-tasks of video-text matching on four widely used benchmarks. We also provide deep analysis and detailed ablation about the proposed method. We show clear improvement in performance across all tasks and datasets considered, demonstrating the value of a model that incorporates object representations into a video-language architecture. The code will be released at \url{https://github.com/FingerRec/OA-Transformer}.


翻译:最近,通过引入大型数据集和强大的变压器网络,视频语言预培训取得了巨大成功,特别是在检索方面。然而,现有的视频语言变压器模型并未明确显示精细的语义对齐。在这项工作中,我们展示了以对象为中心的变压器,即以对象为中心的变压器,将视频语言变压器扩展,以纳入物体表示。关键的想法是利用捆绑框和对象标签来指导培训进程。我们评估了我们关于四个广泛使用的基准上三个标准视频文本匹配子任务的模式。我们还就拟议方法提供了深入分析和详细分析。我们展示了所有任务和所考虑数据集的性能明显改进,展示了将物体表示纳入视频语言结构的模式的价值。代码将在\url{https://github.com/FingerRec/OA-Transforent}发布。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
308+阅读 · 2020年11月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
4+阅读 · 2019年9月5日
An Analysis of Object Embeddings for Image Retrieval
Arxiv
4+阅读 · 2019年5月28日
VIP会员
相关VIP内容
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员