Anomaly detection from a single image is challenging since anomaly data is always rare and can be with highly unpredictable types. With only anomaly-free data available, most existing methods train an AutoEncoder to reconstruct the input image and find the difference between the input and output to identify the anomalous region. However, such methods face a potential problem - a coarse reconstruction generates extra image differences while a high-fidelity one may draw in the anomaly. In this paper, we solve this contradiction by proposing a two-stage approach, which generates high-fidelity yet anomaly-free reconstructions. Our Unsupervised Two-stage Anomaly Detection (UTAD) relies on two technical components, namely the Impression Extractor (IE-Net) and the Expert-Net. The IE-Net and Expert-Net accomplish the two-stage anomaly-free image reconstruction task while they also generate intuitive intermediate results, making the whole UTAD interpretable. Extensive experiments show that our method outperforms state-of-the-arts on four anomaly detection datasets with different types of real-world objects and textures.
翻译:从单一图像中异常地检测是一个潜在的问题,因为异常数据总是罕见的,并且可能具有高度不可预测的类型。由于只有无异常数据,大多数现有方法都训练了自动编码器来重建输入图像,并找到输入和输出之间的差异,以识别异常区域。然而,这种方法面临一个潜在的问题——粗糙的重建会产生额外的图像差异,而在异常中则可能产生高不洁的图像差异。在本文中,我们提出一个两阶段方法来解决这一矛盾,该方法产生高不忠,但无异常重建。我们未经监督的两阶段异常探测(UTAD)依靠两个技术组成部分,即Impression提取器(IE-Net)和专家网络。IE-Net和专家网络完成了两阶段的无异常图像重建任务,同时它们也产生直观的中间结果,使整个UTAD可以解释。广泛的实验表明,我们的方法在四种不同类型真实世界物体和文本的异常探测数据集上超越了状态。