Iterative distributed optimization algorithms involve multiple agents that communicate with each other, over time, in order to minimize/maximize a global objective. In the presence of unreliable communication networks, the Age-of-Information (AoI), which measures the freshness of data received, may be large and hence hinder algorithmic convergence. In this paper, we study the convergence of general distributed gradient-based optimization algorithms in the presence of communication that neither happens periodically nor at stochastically independent points in time. We show that convergence is guaranteed provided the random variables associated with the AoI processes are stochastically dominated by a random variable with finite first moment. This improves on previous requirements of boundedness of more than the first moment. We then introduce stochastically strongly connected (SSC) networks, a new stochastic form of strong connectedness for time-varying networks. We show: If for any $p \ge0$ the processes that describe the success of communication between agents in a SSC network are $\alpha$-mixing with $n^{p-1}\alpha(n)$ summable, then the associated AoI processes are stochastically dominated by a random variable with finite $p$-th moment. In combination with our first contribution, this implies that distributed stochastic gradient descend converges in the presence of AoI, if $\alpha(n)$ is summable.
翻译:在不可靠的通信网络存在的情况下,衡量所收到数据的新鲜度的信息时代(AoI)可能是巨大的,因此会妨碍算的趋同。在本文中,我们研究了一般分布的基于梯度的优化算法在通信中的趋同性,这种通信既不定期发生,也不定期发生,也不在时间上保持独立点。我们表明,只要与AoI进程相关的随机变量在随机变量中以有限的第一时刻以随机变量为主,就会保证趋同性。这改善了先前比第一次更接近的数据的界限要求。我们随后引入了一种与时间变化网络紧密连接的系统(SSC)网络。我们显示:如果任何用于描述SSC网络中代理人之间通信成功与否的流程(美元/美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-美元-正态-正态-正态-正态-正态-可折叠-一个可调-正态-正态-正态-正态-可分配的混合),则以正态-正态-正态-正态-正态-一个稳定的-一个稳定的-一个稳定的组合。