Recommender systems usually learn user interests from various user behaviors, including clicks and post-click behaviors (e.g., like and favorite). However, these behaviors inevitably exhibit popularity bias, leading to some unfairness issues: 1) for items with similar quality, more popular ones get more exposure; and 2) even worse the popular items with lower popularity might receive more exposure. Existing work on mitigating popularity bias blindly eliminates the bias and usually ignores the effect of item quality. We argue that the relationships between different user behaviors (e.g., conversion rate) actually reflect the item quality. Therefore, to handle the unfairness issues, we propose to mitigate the popularity bias by considering multiple user behaviors. In this work, we examine causal relationships behind the interaction generation procedure in multi-behavior recommendation. Specifically, we find that: 1) item popularity is a confounder between the exposed items and users' post-click interactions, leading to the first unfairness; and 2) some hidden confounders (e.g., the reputation of item producers) affect both item popularity and quality, resulting in the second unfairness. To alleviate these confounding issues, we propose a causal framework to estimate the causal effect, which leverages backdoor adjustment to block the backdoor paths caused by the confounders. In the inference stage, we remove the negative effect of popularity and utilize the good effect of quality for recommendation. Experiments on two real-world datasets validate the effectiveness of our proposed framework, which enhances fairness without sacrificing recommendation accuracy.


翻译:建议系统通常从各种用户行为中学习用户兴趣,包括点击和点击后行为(例如喜欢和喜欢)。然而,这些行为不可避免地表现出受欢迎偏差,导致某些不公平问题:1)对于质量类似的项目,更受欢迎的项目受到更多的曝光;2)更糟糕的是,受欢迎程度较低的项目可能受到更多的曝光。减少受欢迎偏差的现有工作盲目地消除了偏差,通常忽视了项目质量的影响。我们争辩说,不同用户行为(例如转换率)之间的关系实际上反映了项目质量。因此,为了处理不公平问题,我们建议通过考虑多种用户行为来降低受欢迎程度的准确性。在这项工作中,我们研究了互动生成程序背后的因果关系,在多活动建议中,我们发现:(1) 受关注程度是受关注项目与用户后击后互动之间的一个混杂点,导致第一个不公平;和(2) 某些隐蔽的用户(例如,项目生产者的声誉)关系既影响着项目的受欢迎度和质量,又造成第二个不公不公不公不公不公的问题。为了减轻这些因果关系,我们建议背后的因果关系,我们建议会影响。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
征稿 | 国际KG大会IJCKG 2021投稿延期!推荐 SCI 一区期刊
开放知识图谱
0+阅读 · 2021年9月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
15+阅读 · 2021年6月27日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
征稿 | 国际KG大会IJCKG 2021投稿延期!推荐 SCI 一区期刊
开放知识图谱
0+阅读 · 2021年9月29日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员