The promise constraint satisfaction problem (PCSP) is a recently introduced vast generalisation of the constraint satisfaction problem (CSP) that captures approximability of satisfiable instances. A PCSP instance comes with two forms of each constraint: a strict one and a weak one. Given the promise that a solution exists using the strict constraints, the task is to find a solution using the weak constraints. While there are by now several dichotomy results for fragments of PCSPs, they all consider (in some way) symmetric PCSPs. 1-in-3-SAT and Not-All-Equal-3-SAT are classic examples of Boolean symmetric (non-promise) CSPs. While both problems are NP-hard, Brakensiek and Guruswami showed [SICOMP'21] that given a satisfiable instance of 1-in-3-SAT one can find a solution to the corresponding instance of (weaker) Not-All-Equal-3-SAT. In other words, the PCSP template (1-in-3,NAE) is tractable. We focus on non-symmetric PCSPs. In particular, we study PCSP templates obtained from the Boolean template (t-in-k,NAE) by either adding tuples to t-in-k or removing tuples from NAE. For the former, we classify all templates as either tractable or not solvable by the currently strongest known algorithm for PCSPs, the combined basic LP and affine IP relaxation of Brakensiek, Guruswami, Wrochna, and \v{Z}ivn\'y [SICOMP'20]. For the latter, we classify all templates as either tractable or NP-hard.


翻译:承诺限制满意度问题( PCSP) 是最近对限制满意度问题( PCSP) 的广泛概括, 它捕捉到可讽刺的事例。 PCSP 实例包含两种不同的制约形式: 严格和弱。 鉴于有希望使用严格的限制来找到解决办法, 任务在于利用薄弱的制约来找到解决办法。 虽然现在对PCSP的碎片有几种分解结果, 它们都认为( 某种方式) 对称 PCSP 。 1 - in-3- SAT 和 Not- All- Equal-3- SAT 是 Boolean 匹配的典型例子。 PCSP 符号(1- in-3- NAE) 的典型( 非保证) CSP 。 虽然这两个问题都是 NP- hard, Brakensekenekemek 和 Gruuswami 都显示了[SICOMP 21], 以1- in 3- at- at- at- at- combetal 实例来找到解决方案。, PC- sildal- sleglegal- studal tal 、 the ex- suplemental- suplemental- wenal- suplemental- suplemental- sal- supal- sal- sal- sal- sal- smal- sal- sal- suplemental- supal- suplemental- suplementalmmal,,,, 和, 和, 和 或目前我们 或我们 或所有 。我们 或我们 或我们所 或我们 或我们所 或我们所 PC- sal- sal- PC- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- salmal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal- sal

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月13日
Arxiv
0+阅读 · 2022年10月13日
Arxiv
0+阅读 · 2022年10月12日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员