For nonsymmetric block three-by-three singular saddle point problems arising from the Picard iteration method for a class of mixed finite element scheme, recently Salkuyeh et al. in (D.K. Salkuyeh, H. Aslani, Z.Z. Liang, An alternating positive semi-definite splitting preconditioner for the three-by-three block saddle point problems, Math. Commun. 26 (2021) 177-195) established an alternating positive semi-definite splitting (APSS) method. In this work, we analyse the semi-convergence of the APSS method for solving a class of nonsymmetric block three-by-three singular saddle point problems. The APSS induced preconditioner is applied to improve the semi-convergence rate of the flexible GMRES (FGMRES) method. Experimental results are designated to support the theoretical results. These results show that the served preconditioner is efficient compared with FGMRES without a preconditioner.
翻译:最近,Salkuyeh等人在(D.K.Salkuyeh、H.Aslani、Z.Z.Liang,一个交替积极的半无限期分解前题,Math.Commun.26 (2021) 177-195)建立了一种交替积极的半无限期分解法(APSS),在这项工作中,我们分析了APSS方法在解决三、三、三、三个单级支架问题方面的半趋同法的半趋同法的半趋同法,用于提高灵活GMRES(FGMRES)方法的半趋同率。实验结果用于支持理论结果。这些结果表明,与女性生殖器残割法相比,所服务的先决条件是有效的,没有先决条件。