Outflow boundaries play an important role in multiphase fluid dynamics simulations that involve transition between liquid and vapor phases. These flows are dominated by low Weber numbers and a sharp jump in pressure, velocity, and temperature. Inadequate treatment of these jumps at the outlet generates undesirable fluid disturbances that propagate upstream and lead to instabilities within the computational domain. To mitigate these disturbances, we introduce a forcing term that can be applied to incompressible Navier-Stokes equations to enforce stability in the numerical solution. The forcing term acts as a damping mechanism to control vortices that are generated by droplet/bubbles in multiphase flows, and is designed to be a general formulation that can be coupled with a fixed pressure outflow boundary condition to simulate a variety of multiphase flow problems. We demonstrate its applicability to simulate pool and flow boiling problems, where bubble-induced vortices during evaporation and condensation present a challenge at the outflow. Validation and verification cases are chosen to quantify accuracy and stability of the proposed method in comparison to established benchmarks and reference solutions, along with detailed performance analysis for three-dimensional simulations on leadership supercomputing platforms. Computational experiments are performed using Flash-X, which is a composable open-source software instrument designed for multiscale fluid dynamics simulations on heterogeneous architectures.
翻译:暂无翻译