Generative models are becoming popular for the synthesis of medical images. Recently, neural diffusion models have demonstrated the potential to generate photo-realistic images of objects. However, their potential to generate medical images is not explored yet. In this work, we explore the possibilities of synthesis of medical images using neural diffusion models. First, we use a pre-trained DALLE2 model to generate lungs X-Ray and CT images from an input text prompt. Second, we train a stable diffusion model with 3165 X-Ray images and generate synthetic images. We evaluate the synthetic image data through a qualitative analysis where two independent radiologists label randomly chosen samples from the generated data as real, fake, or unsure. Results demonstrate that images generated with the diffusion model can translate characteristics that are otherwise very specific to certain medical conditions in chest X-Ray or CT images. Careful tuning of the model can be very promising. To the best of our knowledge, this is the first attempt to generate lungs X-Ray and CT images using neural diffusion models. This work aims to introduce a new dimension in artificial intelligence for medical imaging. Given that this is a new topic, the paper will serve as an introduction and motivation for the research community to explore the potential of diffusion models for medical image synthesis. We have released the synthetic images on https://www.kaggle.com/datasets/hazrat/awesomelungs.
翻译:最近,神经扩散模型展示了生成物体照片现实图像的潜力。然而,它们生成医学图像的潜力尚未得到探讨。在这项工作中,我们探索了利用神经扩散模型合成医学图像的可能性。首先,我们使用预先培训的DALLE2模型从输入文本提示中生成肺X-光和CT图像。第二,我们用3165 X-光图像进行稳定的传播模型培训,并生成合成图像。我们通过定性分析评估合成图像数据,其中两个独立的放射学家将生成的数据随机选择的样本标为真实、假或不确定。结果显示,通过传播模型生成的图像可以翻译与胸部X光或CT图像中某些医学条件非常具体的特点。仔细调整模型非常有希望。根据我们的知识,这是利用神经传播模型生成肺X光和CT图像的首次尝试。这项工作的目的是在人造情报中引入新的层面,用于医学成像。鉴于这是X-光或CT图像传播模型的新动机,因此,我们所发行的论文将成为一个用于合成图像的合成模型。