This paper provides a novel approach to stitching surface images of rotationally symmetric parts. It presents a process pipeline that uses a feature-based stitching approach to create a distortion-free and true-to-life image from a video file. The developed process thus enables, for example, condition monitoring without having to view many individual images. For validation purposes, this will be demonstrated in the paper using the concrete example of a worn ball screw drive spindle. The developed algorithm aims at reproducing the functional principle of a line scan camera system, whereby the physical measuring systems are replaced by a feature-based approach. For evaluation of the stitching algorithms, metrics are used, some of which have only been developed in this work or have been supplemented by test procedures already in use. The applicability of the developed algorithm is not only limited to machine tool spindles. Instead, the developed method allows a general approach to the surface inspection of various rotationally symmetric components and can therefore be used in a variety of industrial applications. Deep-learning-based detection Algorithms can easily be implemented to generate a complete pipeline for failure detection and condition monitoring on rotationally symmetric parts.
翻译:本文为旋转对称部件的表面图像缝合提供了一种新颖的方法,它展示了一种基于地貌的缝合方法,从视频文档中创建一种无扭曲和真实到真实的图像的过程管道。 发达的过程因此使得能够进行条件监测而不必查看许多个人图像。 为了验证目的,这将在文件中用一个破旧的球螺旋驱动螺旋的具体示例来显示。 发达的算法旨在复制线扫描相机系统的功能原理,即物理测量系统被基于地貌的方法所取代。 为了评价缝合算法,使用了一些指标,其中一些指标只是在本工作中开发出来的,或者已经使用的测试程序加以补充。 发达的算法的适用性不限于机器工具螺旋。相反,发达的方法允许对各种旋转式对称组件进行地面检查的一般方法,因此可以用于各种工业应用。 深学习式测算法可以很容易地用来生成一个完整的管道,用于检测和对旋转式测量部件进行状况的监测。