In this paper, we propose a second-order extension of the continuous-time game-theoretic mirror descent (MD) dynamics, referred to as MD2, which provably converges to mere (but not necessarily strict) variationally stable states (VSS) without using common auxiliary techniques such as time-averaging or discounting. We show that MD2 enjoys no-regret as well as an exponential rate of convergence towards strong VSS upon a slight modification. MD2 can also be used to derive many novel continuous-time primal-space dynamics. We then use stochastic approximation techniques to provide a convergence guarantee of discrete-time MD2 with noisy observations towards interior mere VSS. Selected simulations are provided to illustrate our results.
翻译:在本文中,我们提议将连续时间游戏理论镜像下沉动态(MD2)的第二序扩展,称为MD2, 它可以被简单(但不一定严格)稳定变化的状态(VSS)集中起来,而没有使用共同的辅助技术,如时间稳定或贴现等。我们显示MD2享有无回归率,并在稍作修改后获得强大的VSS指数性趋同率。MD2还可以用来获取许多新的连续时间原始空间动态。我们随后使用随机近距离接近技术来提供离散时间MD2的趋同保证,同时对内地光是VSS进行吵闹的观测。我们提供了一些模拟来说明我们的结果。