Domain adaptation for large neural language models (NLMs) is coupled with massive amounts of unstructured data in the pretraining phase. In this study, however, we show that pretrained NLMs learn in-domain information more effectively and faster from a compact subset of the data that focuses on the key information in the domain. We construct these compact subsets from the unstructured data using a combination of abstractive summaries and extractive keywords. In particular, we rely on BART to generate abstractive summaries, and KeyBERT to extract keywords from these summaries (or the original unstructured text directly). We evaluate our approach using six different settings: three datasets combined with two distinct NLMs. Our results reveal that the task-specific classifiers trained on top of NLMs pretrained using our method outperform methods based on traditional pretraining, i.e., random masking on the entire data, as well as methods without pretraining. Further, we show that our strategy reduces pretraining time by up to five times compared to vanilla pretraining. The code for all of our experiments is publicly available at https://github.com/shahriargolchin/compact-pretraining.


翻译:大型神经语言模型(NLMS)的校外适应与培训前阶段的大量非结构化数据相结合。然而,在本研究中,我们显示,预先培训的NLMS从侧重于域内关键信息的紧凑数据子集中更有效更快地学习了部内信息。我们使用抽象摘要和采掘关键词组合,从非结构化数据中构建了这些紧凑子集。特别是,我们依靠BART生成抽象摘要,KeyBERT从这些摘要(或原始非结构化文本直接)中提取关键词。我们用六种不同的设置来评估我们的方法:三个数据集结合两个不同的NLMS。我们的结果显示,在NLMS顶部培训的任务分类人员先用我们基于传统预培训的方法,即随机遮盖整个数据的方法,以及不经过预先训练的方法,先行。我们的战略比Vanilla预培训前减少5次。我们所有实验的代码在 httpsprepreubol/comactriargrg中公开提供。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年9月30日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员